Balancing Degree, Diameter, and Weight in Euclidean Spanners

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balancing Degree, Diameter and Weight in Euclidean Spanners

In a seminal STOC’95 paper, Arya et al. [4] devised a construction that for any set S of n points in R and any ǫ > 0, provides a (1 + ǫ)-spanner with diameter O(log n), weight O(log n)w(MST (S)), and constant maximum degree. Another construction of [4] provides a (1 + ǫ)-spanner with O(n) edges and diameter α(n), where α stands for the inverse-Ackermann function. Das and Narasimhan [18] devised...

متن کامل

Testing Euclidean Spanners

In this paper we develop a property testing algorithm for the problem of testing whether a directed geometric graph with bounded (out)degree is a (1 + δ)-spanner.

متن کامل

Euclidean spanners in high dimensions

A classical result in metric geometry asserts that any n-point metric admits a linear-size spanner of dilation O(log n) [PS89]. More generally, for any c > 1, any metric space admits a spanner of size O(n), and dilation at most c. This bound is tight assuming the well-known girth conjecture of Erdős [Erd63]. We show that for a metric induced by a set of n points in high-dimensional Euclidean sp...

متن کامل

Tree spanners of small diameter

A graph that contains a spanning tree of diameter at most t clearly admits a tree t-spanner, since a tree t-spanner of a graph G is a sub tree of G such that the distance between pairs of vertices in the tree is at most t times their distance in G. In this paper, graphs that admit a tree t-spanner of diameter at most t + 1 are studied. For t equal to 1 or 2 the problem has been solved. For t = ...

متن کامل

An Optimal-Time Construction of Euclidean Sparse Spanners with Tiny Diameter

In STOC’95 [5] Arya et al. showed that for any set of n points in R, a (1+ǫ)-spanner with diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges) can be built in O(n log n) time. Moreover, it was shown in [5, 27] that for any k ≥ 4, one can build in O(n(log n)2kαk(n)) time a (1 + ǫ)-spanner with diameter at most 2k and O(n2kαk(n)) edges. The function αk is the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2014

ISSN: 0895-4801,1095-7146

DOI: 10.1137/120901295